Practice A

For use with pages 625-632

Find the greatest common factor and factor it out of the expression.

1.
$$3x + 18$$

4.
$$6x^3 - 2x^2 + 2x$$

2.
$$-2c + 10$$

5.
$$d^4 + d^3 - 2d^2$$

3.
$$4y^2 + 4y + 8$$

6.
$$10a^3 - 12a^2 + 4a$$

Tell whether the expression is factored completely. If the expression is not factored completely, write the complete factorization.

7.
$$2(x^2+1)$$

10.
$$m(m^2 + 5m + 2)$$

8.
$$2(n^2 + 4n + 4)$$

11.
$$2(x^2 + 5x + 6)$$

9.
$$3(x^2-1)$$

12.
$$3t(t^2-t+10)$$

Factor the expression completely.

13.
$$6(x+1) + 7(x+1)$$

16.
$$2x(x+4) + 7(x+4)$$

19.
$$2x^2 + 16x + 14$$

22.
$$x^3 + 6x^2 + 9x$$

14.
$$c(c-2) + 2(c-2)$$

17.
$$14x - 28x^2$$

20.
$$5x^2 - 45$$

23.
$$x^3 + x^2 + 2x + 2$$

15.
$$m(m+3) - 5(m+3)$$

18.
$$45mn - 30m^2$$

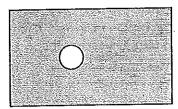
21.
$$14t^2 - 35t - 21$$

24.
$$d^3 + d^2 + 3d + 3$$

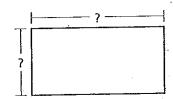
Solve the equation. Tell which solution method you used.

25.
$$x^2 + 4x + 3 = 0$$

28.
$$x^2 - 4x - 2 = 0$$


26.
$$x^2 - 16 = 0$$

29.
$$3x^2 + x + 1 = 0$$


27.
$$9x^2 + 49 = 0$$

30.
$$4x^2 + 2x - 1 = 0$$

31. Area Find the area of the shaded region shown at the right. The area of the rectangle is $5x^2 + 12x + 10$ and the area of the circle is $x^2 + 2$. Write the area in factored form.

32. Rectangle Area Find the dimensions of a rectangle if its area is xy - 4x + 2y - 8.

Practice B

For use with pages 625-632

Find the greatest common factor and factor it out of the expression.

1.
$$6x^2 + 10x$$

4.
$$10x^4 + 16x^3 + 4x^2$$

2.
$$5c^3 - 25c^2 + 10c$$

5.
$$4d^4 + d^3 - 3d^2$$

3.
$$15y^3 + 6y^2 - 21y$$

6.
$$8a^5 - 10a^3 + 18a^2$$

Tell whether the expression is factored completely. If the expression is not factored completely, write the complete factorization.

7.
$$3(x^2 + 9)$$

10.
$$3m(m^2 + 9m + 27)$$

8.
$$5(n^2 + 8n + 16)$$

11.
$$2(x^2 + 7x + 6)$$

9.
$$2(x^2-4)$$

12.
$$3t(t^2-5t+10)$$

Factor the expression completely.

13.
$$6x^3 + 18x^2$$

16.
$$35a^3 - 28a^2$$

19.
$$3m^2 + 24m + 36$$

22.
$$6x^3 + 24x^2 + 24x$$

14.
$$3c^3 - 12c$$

17.
$$32x - 48x^2$$

20.
$$4x^2 + 4x - 80$$

23.
$$x^3 + x^2 + 4x + 4$$

15.
$$-10m^3 - 2m$$

18.
$$35xy - 60x^2$$

21.
$$2t^3 + 2t^2 - 12t$$

24.
$$d^3 + 2d^2 + 3d + 6$$

Solve the equation. Tell which solution method you used.

25.
$$x^2 + 7x + 6 = 0$$

26.
$$x^2 - 5x + 9 = 0$$

27.
$$4x^2 - 28x + 49 = 0$$

28.
$$3x^2 - 6x + 2 = 0$$

29.
$$7x^2 - 2x + 5 = 0$$

30.
$$5x^2 + 4x - 3 = 0$$

Vertical Motion In Exercises 31 and 32, use the vertical motion model $h=16t^2-vt$, where h is the initial height (in feet), v is the initial velocity (in feet per second), and t is the time (in seconds) the object spends in the air.

- **31.** *Baseball* You toss a baseball from a height of 32 feet with an initial upward velocity of 16 feet per second. How long will it take the baseball to reach the ground?
- **32.** Rocket You launch a rocket from a height of 64 feet with an initial upward velocity of 48 feet per second. How long will it take the rocket to reach the ground?

Practice C

For use with pages 625-632

Find the greatest common factor and factor it out of the expression.

1.
$$3x^2 - 12x$$

4.
$$\frac{10}{3}x^3 + \frac{5}{3}x^2 + 35x$$

2.
$$4c^3 - 12c^2 + 8c$$

5.
$$15d^4 - 6d^3 + 3d^2$$

3.
$$-7y^3 + 35y^2 - 7y$$

6.
$$8a^4b + 48a^2b - 88ab$$

Tell whether the expression is factored completely. If the expression is not factored completely, write the complete factorization.

7.
$$3x(x^2 + 5)$$

10.
$$6m(m^3 + 6m + 5)$$

8.
$$2n(2n^2-9n-5)$$

11.
$$8(6x^2 - 2x - 28)$$

9.
$$7x(9x^2-25)$$

12.
$$-4t(5t^2-2t+6)$$

Factor the expression completely.

13.
$$21x^2 - 15x$$

$$\cdot$$
16. 6 $y^3 + 2y^2 - 20y$

19.
$$x^3 - 2x^2 + 3x - 6$$

22.
$$2x^3 + 3x^2 - 2x - 3$$

14.
$$-4c^3 + 12c^2$$

17.
$$6t^3 + 9t^2 - 15t$$

20.
$$5x^3 - 20x$$

23.
$$x^3 - 4x^2 + 3x - 12$$

15.
$$5m^3 + 50m^2 + 125m$$

18.
$$56x - 14x^2 - 21x^3$$

21.
$$t^3 + 3t^2 - 4t - 12$$

24.
$$2d^3 - 10d^2 + 3d - 15$$

Solve the equation. Tell which solution method you used.

25.
$$21x^2 - 57x - 18 = 0$$

26.
$$16x^2 + 25 = 0$$

27.
$$2x^2 + 6x - 3 = 0$$

28.
$$5x^2 + 4x + 3 = 0$$

29.
$$3x^2 - 5x - 1 = 0$$

30.
$$10x^2 - 38x + 36 = 0$$

Vertical Motion In Exercises 31–33, use the vertical motion models, where h is the initial height (in feet), v is the initial velocity (in feet per second), and t is the time (in seconds) the object spends in the air.

Vertical motion model for Earth: $h = 16t^2 - vt$

. Vertical motion model for the moon: $h = \frac{16}{6}t^2 - vt$

- **31.** Earth You toss a baseball from a height of 64 feet with an initial upward velocity of 48 feet per second. How long will it take the baseball to reach the ground?
- **32.** *Moon* On the moon, you toss a baseball from a height of 64 feet with an initial upward velocity of 48 feet per second. How long will it take the baseball to reach the surface of the moon?
- 33. Do objects fall faster on Earth or on the moon?